

Q8 T 2200

Superior transmission and hydraulic oil for agriculture and construction

Description

Q8 T 2200 is a superior universal tractor transmission oil. It is formulated to provide an exceptional protection for off-highway, construction and agricultural equipment. The versatile oil meets the requirements of API and a range of OEMs such as Deutz, Volvo, CAT and Allison. Q8 T 2200 improves durability, increases operator comfort and boosts productivity.

Applications

Q8 T 2200 is used as a lubricant in off-highway, construction and agricultural equipment. It is applied as oil immersed brake/clutch fluid, hydraulic or transmission lubricant or for axles (UTTO).

Benefits

- Limits wet brake noise while limiting friction plate wear.
- · Outstanding hydraulic fluid properties.
- Superb protection against equipment component corrosion.
- Superb compatibility with conventional elastomers.
- Excellent prevention of foam formation.

Specifications, recommendations and approvals

API	GL-4	Massey Ferguson	CMS M 1135
Allison	C-4	Massey Ferguson	CMS M 1141
Case	MS 1207	Massey Ferguson	CMS M 1143
Case	MS 1209	Massey Ferguson	CMS M 1145
Case	MS 1210	New Holland	NH 410-B
Case New Holland	MAT 3505	New Holland	NH 410-C
Case New Holland	MAT 3506	Valtra	G2-08 (XT-60)
Case New Holland	MAT 3525	Valtra	G2-B10 (XT-60+)
Case New Holland	MAT 3540	Volvo	97303 (WB 101)
Deutz	Allis AC Power Fluid 821 XL	ZF	TE-ML 03E
Ford	M2C134-D	ZF	TE-ML 05F
John Deere	JDM J20C	ZF	TE-ML 06K
Komatsu	KES 07.866	ZF	TE-ML 17E
Komatsu Dresser	B06-0002	ZF	TE-ML 21F
Kubota	UDT		

Color code blue = officially approved

Properties

	Method	Unit	Typical
Density, 20 °C	D 4052	g/ml	0,871
Kinematic Viscosity, 40 °C	D 445	mm²/s	55.1
Kinematic Viscosity, 100 °C	D 445	mm²/s	9.8
Viscosity Index	D 2270	-	165
Brookfield Viscosity, -26 °C	D 2983	Pa.s	8
Brookfield Viscosity, -10 °C	D 2983	Pa.s	1,2
Pour Point	D 97	°C	-33
Flash Point, COC	D 92	°C	215
FZG Test, A/8.3/90	DIN 51354	load stage	11

The figures above are not a specification. They are typical figures obtained within production tolerances.

Remarks

Product Data Sheet includes a selection of specifications, for full overview please consult the Q80ils website.